Liu Yanlong: 2012 domestic nickel-metal hydride battery industry is facing transformation pressure

Liu Yanlong, secretary-general of the China Chemical and Physical Power Industry Association, told reporters on the 21st that it is expected that the domestic nickel-metal hydride battery industry will experience relatively large pressure in 2012. If raw material prices maintain current prices, the industry may experience slight growth if raw material prices rise again. Product substitution pressure will increase, nickel-metal hydride battery companies face pressure for further transformation.

According to reports, in 2011, the prices of raw materials for nickel-metal hydride batteries, including nickel, rare earth, and alloy powders, have been rising, and the production cost of nickel-metal hydride batteries has increased by nearly 11%. At the same time, nickel prices have risen, exchange rates, inflation, and labor costs have increased. As a result, most of the domestic nickel-metal hydride battery companies suffered losses in 2011. It is expected that the production of small nickel-metal hydride batteries will decline by more than 10% in 2011, and HEV (hybrid units) will increase production of large nickel-metal hydride batteries by 10%. The domestic nickel-metal hydride battery industry is dominated by small-scale consumer nickel-metal hydride batteries. HEV batteries are mainly produced by Japanese companies and supplied to Japanese automakers.

Liu Yanlong said that large-scale nickel-metal hydride batteries still have room for development before large-scale lithium-electric vehicles come into being. The nickel-metal hydride battery market in Japan is expected to maintain a growth rate of 10%-20% in the next few years, among which, the market for small nickel-metal hydride batteries will shrink, and the scale of the large-scale nickel-metal hydride battery market is expected to gradually increase from 212 million in 2012 to 2015. The year's 315 million only. For domestic companies, they face similar pressures for transformation.

This trend is reflected in listed companies. Keli lost 74.8871 million yuan in July-September, compared with 104.829 million yuan in the same period of last year. The company's operating cost in the quarter increased by 71.3%. At present, Keli has increased its investment in HEV products and acquired Panasonic in the first half of 2011. Nissho Corun Energy Co., Ltd., which manufactures nickel-hydrogen hybrid batteries for automobiles.

Product Description


SPD Surge Protective Device,Lightning Surge Protector
Surge Protection Device (SPD)

 
It is a device used to limiting instant surge voltage and discharge surge current, it at least including a non-linear component.
 
Surge protective Device Model Selection
 
With the impact of international information flow, the rapid development of microelectronic science and technology, communication, computer and automatic control technology, make the building start to go for high quality, high functional area, formed a new building style-intelligent building. As inside the intelligent building there are lot of information system, <<Building lightning protection design norm>> GB50057-94(2002 vision)(hereafter brief as <<lightning protection norm>>) put forward the relative requirement to install the surge protective device, to ensure the information system safely and stable running.
SPD essentially is a equipotential connection material, its model selection is according to the different lightning protection area, different lightning electromagnetic pulse critical and different equipotential connection position, decide which kind of SPD used in the area, to achieve the equipotential connection with the common earth electrode. Our statement will based on SPD's maximum discharge current Imax, continuous operating voltage Uc, protection voltage Up, alarm mode etc.
As per << Lightning Protection Norm>> item 6.4.4 stipulation "SPD must can withstand the expected lightning current flow and should confirm to the additional two requirements: the maximum clamp voltage during surge across, capable to extinguish the power frequency follow-on current after lightning current across."  That is the value of SPD's max. clamp voltage add its induction voltage of two ends should be same with the system's basic insulation level and the equipment allowed max. surge voltage. 
 
SPD for Power Supply System Series Selection Guide
 
The installation of SPD at each lightning protection zone, according to the standard of Low Voltage Electrical appearance, make classification of electrical equipment in accordance with the over voltage category, its insulation withstand impulse voltage level can determine the selection of SPD. According to the standard of low voltage electrical appearance, make classification of electrical equipment in accordance with the over voltage category as signal level, loading level, distribution and control level, power supply level. Its insulation withstand impulse voltage level are:1500V,2500V,4000V,6000V. As per to the protected equipment installation position different and the different lightning current of different lightning protection zone, to determine the installation position of SPD for power supply and the break-over capacity.
The installation distance between each level SPD should not more than 10m, the distance between SPD and protected equipment should as short as possible, not more than 10m. If due to limitation of installation position, can't guarantee the installation distance, then need to install decoupling component between each level SPD, make the after class SPD can be protected by the prior class SPD. In the low voltage power supply system, connecting an inductor can achieve the decoupling purpose. 
SPD for power supply system specification selection principle 
Max. continuous operating voltage: bigger than protected equipment, the system's max. continuous operating voltage. 
TT System: Uc≥1.55Uo (Uo is low voltage system to null line voltage)
TN System: Uc≥1.15Uo
IT System: Uc≥1.15Uo(Uo is low voltage system to line voltage)
Voltage Protection Level: less than the insulation withstand impulse voltage of protected equipment
Rated discharge current: determined as per to the lightning situation of the position installed and lightning protection zone.
SP1 Series
 
Normal Working Conditions
-Altitude not exceed 2000m
-Ambient air temperature:
Normal range: -5ºC~+40ºC
Extend range: -40ºC~+80ºC
-Relative Humidity: 30% - 90% under indoor temperature condition
- At the place without obviously shaking and shock vibration
- Non-explosion danger medium, non-corrosion gas and dust ( including conductive dust) 
 
Classification
 
-As per Nominal Discharge Current: 
5,10,20,30,40,60KA(8/20µs)
- As per Maximum continuous operating voltage: 
275V,320V,385V,420V,440V,460V
- As per to poles
1P,1P+N,2P,3P,3P+N,4P
- As per auxiliary functions:
a. With remote signal output ( remote alarm function)
b. Without remote signal output
 
Selection Principle
 
- The continuous applied voltage on the two terminals of SPD should not more than the maximum continuous operating voltage Uc value;
- The voltage protection level Up of SPD should less than the maximum impulse withstand voltage of the protected equipment;
- As per to the different earthing system and protection mode to select the specification accordingly;

Product Features

1, built-in over-current overheating, temperature control circuit technology.

2, the module design, easy installation, online replacement.

3, low leakage current, fast response time, low residual voltage.

4, alarm indication device, green (normal) v red (fault).

Model/Technical Parameters WR-B60 WR-B80 WR-B100 WR-B120 WR-B150
Rated Operating Voltage Un (V ~) 220V 380V 220V 380V 220V 380V  220V 380V   220V 380V  
Maximum Continuous Operating Voltage Uc (V ~) kV 385V 420V 385V 420V 385V 420V  385V 420V 385V 420V
Voltage Protection Level Up (V ~) kV ≤1.8≤2.2 ≤2.4≤2.5 ≤2.5≤3.2  â‰¤3.4≤3.7  ≤4.0≤4.5

 Maximum Discharge

Current Imax(8/μ20μs)kA

60 80 100 120 150

Nominal Discharge

 Current In(8/μ20μs)kA

30 40 60 80 100
Response Time <25 <100
L/N(mm²)The Cross Section Of L/N Line 16,25 16,25 16,25 16,25 25,35
 PE (mm²)The Cross Section Of PE Line 16,25  25,35  25,35  25,35 35
Fuse or Switch (A)  63A  63A  63A,100A 63A,100A 63A,125A
The Line Section of Communication and Alarm (mm²)                                   ≥ 1.5   

Operating

Environment-C

                         (-40ºC~-+85ºC)
Relative humidity 25 ºC                                   ≤95%
installation Standard Rail35mm
Material of Outer Covering Fiber Glass Reinforced Plastic

Surge Protection Device SPD

Surge Protector SPD,Surge Protection Device SPD

Wenzhou Korlen Electric Appliances Co., Ltd. , http://www.korlenelectric.com